Multicomponent control strategy underlying production of maximal hand velocity during horizontal arm swing.
نویسندگان
چکیده
Movement control responsible for generation of maximal hand velocity was studied on the example of horizontal arm swing that is a component of various sports activities. The movement was performed with the nondominant arm in similarity with the baseball bat swing. The task was to generate maximum hand velocity at a target. The movement included trunk long-axis rotation and horizontal shoulder and elbow extension. Kinematics and torque analyses were performed to study the organization of fastest movements and to compare trials representing the best and worst performance in each subject. Results revealed complex control strategy, with the trunk, shoulder, and elbow playing unique roles in generation of maximal hand velocity. The trunk provided a crucial contribution, directly, rotating the entire arm, and indirectly, exerting interaction torque that caused swift elbow extension. The major role of the shoulder was to transfer the mechanical effect of trunk motion to the elbow. However, the shoulder became the primary motion generator when the trunk reached its limits of rotation, revealing sequential organization of control. The role of the elbow was to maximally comply with passive influence of proximal joints. The findings are discussed in light of the leading joint hypothesis that offers a straightforward interpretation of control of horizontal arm swing as well as practically efficient recommendations for increases in movement speed. The revealed role of intersegmental dynamics in production of high movement speed suggests that movement slowness characteristic for some motor disorders may be partially a compensatory strategy that facilitates regulation of interaction torque.
منابع مشابه
Control That Maximizes Movement Speed 1 1 2 Multi-component Control Strategy Underlying Production of Maximal Hand Velocity 3 during Horizontal Arm Swing 4 5 6 Control That Maximizes Movement Speed 2
27 Movement control responsible for generation of maximal hand velocity was 28 studied on the example of horizontal arm swing that is a component of various sports 29 activities. The movement was performed with the non-dominant arm in similarity with 30 the baseball bat swing. The task was to generate maximum hand velocity at a target. The 31 movement included trunk long-axis rotation and horiz...
متن کاملMINIMUM TIME SWING UP AND STABILIZATION OF ROTARY INVERTED PENDULUM USING PULSE STEP CONTROL
This paper proposes an approach for the minimum time swing upof a rotary inverted pendulum. Our rotary inverted pendulum is supported bya pivot arm. The pivot arm rotates in a horizontal plane by means of a servomotor. The opposite end of the arm is instrumented with a joint whose axisis along the radial direction of the motor. A pendulum is suspended at thejoint. The task is to design a contro...
متن کاملUnderstanding how an arm swing enhances performance in the vertical jump.
This investigation was conducted to examine the various theories that have been proposed to explain the enhancement of jumping performance when using an arm swing compared to when no arm swing is used. Twenty adult males were asked to perform a series of maximal vertical jumps while using an arm swing and again while holding their arms by their sides. Force, motion and electromyographical data ...
متن کاملRole of arm motion in the standing long jump.
The role of arm motion on the performance of the standing long jump was investigated. Three males performed a series of jumps with free (JFA) and with restricted (JRA) arm motion to determine if arm swing improves jumping distance. The subjects jumped off a force platform and the motion of the body segments were recorded with a four-camera, passive motion-capture system. Jumping performance was...
متن کاملThe effects of arms and countermovement on vertical jumping.
Countermovement and arm-swing characterize most jumping. For determination of their effects and interaction, 18 males jumped for maximal height from a force platform in all four combinations of arm-swing/no-arm-swing and countermovement/no-countermovement. For all jumps, vertical velocity peaked 0.03 s before and dropped 6-7% by takeoff. Peak positive power averaged over 3,000 W, and occurred a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 102 5 شماره
صفحات -
تاریخ انتشار 2009